Journal d'un Terrien

Web log de Serge Boisse

On line depuis 1992 !

Publicité
Si cette page vous a plu, Copiez son adresse et partagez-la !
http://sboisse.free.fr/science/cosmologie/cosmo_maths.php
Savez-vous quels sont les articles les plus vendus sur Amazon.fr ?
cosmo_maths

Cosmo Maths !

La science moderne a la réputation de se construire à partir de calculs affreusement compliqués que seules les grosses têtes peuvent comprendre. Mais les idées fondamentales sont toujours très simples, et il est fréquent que l'on puisse les justifier de manière parfaitement valable à l'aide calculs qui ressemblent à des calculs d'épicier.

Les notes qui suivent sont des exemples dus à Jean-Pierre Petit, de l'observatoire de Marseille.


Comment retrouver les lois d'évolution de l'univers en trois lignes de calculs

Assimilons l'univers à un grumeau homogène de poussière de rayon R et de masse M. Considérons un grain de poussière de masse m situé à sa surface. Newton a montré que la force qui s'exerce sur cette masse est la même que celle que produirait toute la masse M concentrée au centre O, c'est à dire :

Appliquons de la mécanique classique et posons

Il vient :  où encore :  : c'est l'équation de Friedman.

Construisons l'une des trois solutions de cette équation différentielle : donnons pour ce faire à la fonction la forme  où et sont deux constantes à déterminer.

. On met alors dans l'équation et on obtient :

qui doit "fonctionner" quel que soit . Seule solution, l'exposant de t doit être nul donc ce qui donne  et

R(t) est la longueur caractéristique de cet univers, qui peut être assimilé à son rayon de courbure, ou encore à la distance moyenne entre deux particules :

|center 


L'univers autistique

Un simple coup d'oeil à la courbe R(t) montre que l'expansion de l'univers a commencé par une explosion, la vitesse d'expansion allant ensuite en se ralentissant. Si l'on assimile R(t) à la distance moyenne entre deux particules, ct représente le rayon d'une onde électromagnétique émise à l'instant t=0. Avec une vitesse de la lumière constante, on voit que le rayon de cette "sphère horizon", ou sphère du connaissable restera pendant un certain temps inférieur à la distance moyenne entre les particules, lesquelles s'ignoreront totalement pendant cette période.

|center
Et voilà pourquoi l'univers primitif était non collisionnel !


Comment calculer le rayon d'un trou noir

Soit un astre de rayon et de masse et une masse à sa surface. Supposons que celle-ci soit une fusée. L'énergie qu'elle pourra mettre en oeuvre ne pourra excéder , qui représente là son équivalent en énergie. Calculons l'énergie à dépenser pour extraire cette masse du champ de gravité de l'astre : la force est , Le travail est - , où représente un petit incrément du rayon. L'énergie à fournir est l'intégrale de à l'infini du travail, soit

Cette énergie excédera l'énergie maximale disponible si , soit :

 (Rayon de Schwartzchild)

En fait, un calcul plus fin tenant compte de la diminution de la masse conduirait à

Si une masse est contenue à l'intérieur du rayon de schwarzchild, aucun objet ne peut en sortir car l'énergie nécessaire est supérieure à . Le rayon de Schwarzchild du soleil est de 3,7 Km.

Mais un photon ? Le photon a une énergie ( se lit "nu", lettre grecque). Il représente une quantité équivalente de matière  grâce à laquelle on peut calculer son énergie d'extraction :

L'énergie d'un photon réussistant à quitter l'astre est , qui est inférieure à (phénomène de red shift gravitationnel). Donc si  l'astre ne peut plus émettre de lumière : c'est un trou noir.


Les conditions de Planck

La dimension spatiale d'une particule (sa taille) est donnée par la longueur d'onde de Compton . (On remarque que plus une particule est lourde, plus sa taille est petite !)

Supposons que cette particule soit un trou noir : Alors cette longueur  devra être égale au rayon de schwartzchild, soit , ce qui donne qui vaut grammes. C'est la masse de Planck. Il ne peut exister de particule plus lourde. Son rayon est alors donné par sa longueur de Compton, soit C'est la longueur de Planck qui vaut cm. Rien de plus petit ne peut exister dans l'univers : c'est la "maille élémentaire de l'espace".

Soit alors un photon de longueur d'onde ( est sa fréquence) : son énergie est , sa masse équivalente est . Son rayon de Schwartzchild est alors
, qui égalera la longueur d'onde si

Quand la longueur d'onde d'un photon égale son rayon de schwartzchild, il se met à tourner en rond comme un serpent qui se mord la queue et l'information ne peut plus circuler. A cette longueur est associé le temps secondes. C'est le temps de Planck, ou encore l'épaisseur du présent.


La super-relativité ou la théorie de jean-pierre Petit

Il est conseillé de lire la page que j'ai écrite sur les paradoxes de la cosmologie

On "rend leur liberté" à toutes les "constantes" de la physique. Par exemple , constante de la gravitation, , constante de Planck, , vitesse de la lumière, , masse du proton ou du neutron.

MAIS ce sont des constantes ! On ne pas peut pas les faire varier !
FAUX, car on peut les faire varier toutes en même temps en conservant entre elles des relations précises :

Dans l'équation de la relativité générale d'Einstein, la constante est une constante absolue imposée par la structure quadridimensionnelle de l'univers (la justification serait trop longue pour tenir dans cette marge :-).
Donc    ( veut dire "varie comme").

On suppose que l'énergie  se conserve au fil du temps, étant la masse de la particule au repos.

On suppose que les galaxies, le système solaire, les trous noirs, les protons et les neutrons "grandissent" en même temps que l'univers, dont le périmètre est pris égal à : écrivons que le rayon de schwartzchild du trou noir grandit comme : , et comme constante, on obtient .

Comme par ailleurs constante,  constante**: c'est la loi de variation de la vitesse de la lumière. On en déduit 

Prenons maintenant deux étoiles de même masse orbitant l'une autour de l'autre, ou en fait autour de leur centre de gravité commun selon une trajectoire circulaire de rayon r : la force centrifuge est ( est la vitesse), l'attraction gravitationnelle mutuelle est . Si varie comme (le rayon de l'univers), alors d'où . Le rapport (prononcer "béta") se conserve au fil du temps, tout comme l'énergie

L'extension spatiale du proton étant donnée par sa longueur d'onde de Compton , on a 

La résolution de l'équation d'Einstein, en supposant l'univers homogène et isotrope (métrique de Robertson-Walker) conduit à l'équation différentielle suivante :

avec ()

est la vitesse d'agitation des galaxies dans ce "fluide cosmologique". En cherchant une solution du type , on voit que beta s'élimine et que la seule solution possible est avec

est "l'indice de courbure", donc cet univers (notre univers !) a une courbure négative. La solution de l'équation est alors C'est la variation du rayon de l'univers avec le temps.

L'horizon cosmologique se définit par l'intégrale

On trouve . Cela signifie que l'homgénéité de l'univers se trouve justifiée à toute époque.

L'entropie devient S ~ Log t. Dans une description où l'entropie remplace la variable temps, la singularité initiale disparaît :

On peut se demander d'ailleurs s'il ne serait pas possible de trouver une substitution analogue pour les variables d'espace ?

Toutes les équations de la physique (boltzmann, schrödinger, Maxwell) sont invariantes par les transformations obtenues. De plus on trouve que le red shift est proportionnel à la distance (loi de Hubble).

Comment vérifier la théorie ?

Jusqu'à quelques milliards d'années -lumières les distances calculées pour les sources sont quasiment identiques aux distances issues du modèle standard. L'énergie des photons étant censée se conserver, comme toutes les énergies, et comme , on a . Le red shift n'est pas la conséquence de l'effet doppler mais découle de la dérive séculaire de la constante de Planck.

En 1988, Bartel et Miley (Nature, vol 373 may 1988) on montré que plus les quasars étaient loin, plus ils étaient petits. Ceci cadre avec la théorie, où les quasars "grandissent" avec l'univers lui-même.

La théorie de JPP n'est pas achevée : il reste à voir comment faire varier certaines constantes liées aux processus nucléaires. Pour le moment, elle ne contredit aucune observation et permet de régler les cinq paradoxes de la cosmologie "orthodoxe" :

Les cinq paradoxes

remarque (2023)

La théorie de Jean-Pierre Petit (dit JPP) est désormais achevée et porte le nom de théorie Janus. Elle est bien plus complexe que la théorie simpliste que j'énonce dans cette page.
Cependant, cette théorie est bizarrement systématiquement dénigrée par le corpus scientifique français et n'a trouvé jusqu'ici qu'un faible écho.
OK, ça a l'air d'une théorie du complôt. Mais pour une fois, je pense que ce n'en n'est pas une. Je crois que JPP a raison.

Le principal résultat de JPP est le suivant :

La théorie JANUS

janus
janus

La théorie JANUS

center

Ce modèle cosmologique dû à Jean-Pierre Petit est une extension de la relativité générale. Il est bimétrique : il y a deux deux univers (2 feuillets topologiques en pratique), liés uniquement par la gravitation, avec une constante de couplage négative.

Les deux univers partagent le même espace-temps et sont liés uniquement par la gravitation. Ce qui fait que les masses situées dans "l'univers jumeau" sont invisibles et indétectables sauf par leurs effets gravitationnels.
IL n'y a pas de masse négative, c'est seulement la constante de couplage qui l'est : Les masses de chaque univers s'attirent entre elles. Les masses d'un univers repoussent celles l'univers jumeau. Il n'y a pas d'effet "run-away".

D'où les deux métriques :

et

On peut comparer avec l'équation de champ d'Einstein :

Ainsi le modèle Janus fait disparaître la constante cosmologique qui avait toujours semblé artificielle à Einstein.

Cette théorie est compatible avec l'intégralité des observations physiques et astronomiques à ce jour (2025) Mais à la différence de la théorie des cordes qui est stérile, la théorie Janus prédit des phénomènes nouveaux. D'ailleurs certains de ces phénomènes ont déjà été observés mais non remarqués comme étant des conséquences de la théorie. Citons par exemple la très fameuse matière noire, dont la théorie Janus n'a nul besoin.

Si cette théorie n'est pas connue de la plupart des physiciens, c'est en raison du caractère parfois irascible de son auteur, qui a tendance à s'emporter violement contre tous ses détracteurs, parmi lesquels quelques scientifiques de grand renom et qui n'ont pas apprécié ce traitement. Il est vrai aussi qu'ils avaient parfois raison... mais pas toujours, la théorie Janus en est la preuve.

Si les questions mathématiques liées à la cosmologie vous intéressent, allez donc voir mes recherches mathématiques personnelles !

Publicité
Commentaires

Commentaires (0) :

Page :



Ajouter un commentaire (pas besoin de s'enregistrer)

Pseudo :
Message :


image de protection
En cliquant sur le bouton "Envoyer" vous acceptez les conditions suivantes : Ne pas poster de message injurieux, obscène ou contraire à la loi, ni de liens vers de tels sites. Respecter la "netiquette", ne pas usurper le pseudo d'une autre personne, respecter les posts faits par les autres. L'auteur du site se réserve le droit de supprimer un ou plusieurs posts à tout moment. Merci !
Ah oui : le bbcode et le html genre <br>, <a href=...>, <b>b etc. ne fonctionnent pas dans les commentaires. C'est voulu.
< Retour en haut de la page